STAT-1302; Lecture 9; Feb. 6, '24

Still in Section 10.2.
$H_{0}: \mu_{1}=\mu_{2}$ where $\sigma_{1}=\sigma_{2}=\sigma$ but σ_{1} and σ_{2} are unknown.
$100(1-\alpha) \%$ CI for $\mu_{1}-\mu_{2}$ when $\sigma_{1}=\sigma_{2}$ but σ_{i} 's are unknown:

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

where $d f=n_{1}+n_{2}-2$.

See last lecture for $S_{p}{ }^{2}$ formula.

Omit p-value approach.
A CI for $\mu_{1}-\mu_{2}$ can be used to test $H_{0}: \mu_{1}=\mu_{2}$
vs. $H_{1}: \mu_{1} \neq \mu_{2}$ in the usual way. That is,
i) Check to see if zero is in the CI.
ii) If 'Yes' in part i '), fail to reject H_{0}.

Otherwise, reject H_{0}.

Rule of thumb:
If $\frac{\text { larger } S}{\text { smaller } S}<2$, then conclude $\sigma_{1}=\sigma_{2}$.

Ex. A Company claims that its medicine brand A, provides faster pain relief than brand B. A researcher tested both brands on two independent groups of randomly selected Patients. Here are the results.

Brand	\underline{n}_{i}	\bar{x}_{i}	$\underline{S_{i}}$
A	25	$\bar{x}_{1}=44$	$S_{1}=11$
B	22	$\bar{x}_{2}=49$	$S_{2}=9$

Is the mean relief time from brand A less than the mean relief time for brand B? Let $\alpha=0.01$. State any assumptions you are making.

Sol'n:

1. Parameter: $\mu_{A}-\mu_{B}$ where μ_{A} is the mean relief time due to brand A and μ_{B} is the mean relief time due to brand B.
2. $H_{0}: \mu_{A}=\mu_{B}$
$H_{1}: \mu_{A}<\mu_{B}$
σ_{A} and σ_{B} are unknown.

$$
\frac{11}{9}=1.22<2 \Rightarrow \text { Can assume } \sigma_{1}=\sigma_{2}
$$

3. Test Stat.

$$
\begin{aligned}
& t=\frac{\left(\bar{x}_{A}-\bar{x}_{B}\right)-0}{\sqrt{S_{P}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{B}}\right)}}=\frac{(44-49)-0}{\sqrt{102.33\left(\frac{1}{25}+\frac{1}{22}\right)}} \\
&=-1.69
\end{aligned} S_{P^{2}}=\frac{\left(n_{A}-1\right) S_{A}^{2}+\left(n_{B}-1\right) S_{B}^{2}}{n_{A}+n_{B}-2}=102.33
$$

$$
d f=25+22-2=45
$$

4. We reject H_{0} if $t<-t_{0.01} ; d f=45$. ie. if $\quad t<-2.412$

Table V

$d f$	0.01
\vdots	\vdots
45	\cdots

5. Decision: Since $t=-1.69>-2.412$, we fail to reject H_{0}.
6. Conclusion: There is not enough evidence to suggest that mean relief time from brand A medicine is less than mean relief time
from brand B medicine.

Assumptions:

1. Two independent Samples.
2. Within each sample obs'ns are independent of each other. (Or write $\frac{n_{i}}{N_{i}}<0.05 ; i=1,2$). 3. $\sigma_{1}=\sigma_{2}$ and σ_{i} 's unknown.
3. Since $n_{1}=25<30$ and $n_{2}=22<30$, relief times of both brands are normally distributed.

Ex. The following was obtained from two independent Sample drawn from normal populations with unknown but equal standard deviations.

$$
\begin{array}{ll}
n_{1}=21, & \bar{x}=13.97, \\
n_{1}=20, & s_{1}=3.78 \\
n_{2}=15.55, & s_{2}=3.26
\end{array}
$$

a) What is a point estimate of $\mu_{1}-\mu_{2}$?

$$
\bar{x}_{1}-\bar{x}_{2}=13.97-15.55=-1.58
$$

b) Construct a 95% CI for $\mu_{1}-\mu_{2}$.

$$
\begin{aligned}
& \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} \cdot S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \\
& \Leftrightarrow\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} \sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
& d f=n_{1}+n_{2}-2=21+20-2=39 \\
& S_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \\
& =\frac{(21-1) 3.78^{2}+(20-1) 3.26^{2}}{21+20-2} \\
& =12.50 \\
& \sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\sqrt{12.50\left(\frac{1}{21}+\frac{1}{20}\right)}=1.10 \\
& t
\end{aligned}
$$

$$
1-\alpha=0.95 ; \alpha=0.05 ; \alpha / 2=0.025
$$

$d f$	0.025
\vdots	\vdots
39	-

Table V

CI: $-1.58 \pm 2.023 \times 1.10=(-3.81,0.65)$

We are 95% confident that $\mu_{1}-\mu_{2}$ is between -3.81 and 0.65 .
c) Test $H_{0}: \mu_{1}=\mu_{2}$ against $H_{1}: \mu_{1} \neq \mu_{2}$ $\alpha=0.05$.

The 95% CI for $\mu_{1}-\mu_{2}$ is $(-3.81,0.65)$.

Since $\mu_{1}-\mu_{2}=0$ is in $(-3.81,0.65)$ we fail to reject H_{0}.
$\$ 10.3$ (FYI)
Set-up: Two independent Samples. Want to test $H_{0}: \mu_{1}=\mu_{2} ; \sigma_{1}, \sigma_{2}$ are unknown and unequal.

$$
\begin{aligned}
& t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \\
& d f=?(\text { see } \oint 10.3) . \\
& \S 10.4 \text { now. }
\end{aligned}
$$

Ex. A researcher wants to find the effect of a special diet on systolic blood pressure. She selected a random Sample of Seven adults and put them on this dietary plan for three months. The following table gives the systolic blood pressure before and after completion of the diet.

Subject 123454
Before $210 \quad 180 \quad 195 \quad 220 \quad 231 \quad 199 \quad 224$
$\begin{array}{llllllll}\text { After } & 193 & 186 & 186 & 223 & 220 & 183 & 233\end{array}$

Q'n: Was the diet effective in reducing systolic blood pressure? Let $\alpha=$ Wiley PLUS: Ass't \#2: Q'4:

Ex. Test $H_{0}: \mu=12.5 ; H_{1}: \mu \neq 12.5 ; \sigma$ unknown $n=18, \bar{x}=12.9 ; S=0.80$. want: p-value.

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{12.9-12.5}{0.8 / \sqrt{18}}=2.121
$$

$$
d f=n-1=18-1=17
$$

$$
P \text {-value }=2 \times P(t>2.121)
$$

However, the value of our test statistic $t=2.121$ does not appear in the row where $d f=17$ (on Table V).

However, for $d f=17$, on that row we see that

$$
2.110<2.121<2.567
$$

We want an approximation for $P(t>2.121)$. On the one hand, it is larger that $P(t>2.567)$. On the other hand, it is less than $P(t>2.110)$.

From Table V,

$d f$	0.025
17	\vdots
	--2.110

and

$d f$	0.01
	\vdots
17	\vdots
	\vdots

So, $\quad 0.01<P(t>2.121)<0.025$
\therefore We double these bounds to get an approx'n for the P-value. That is,

$$
\underbrace{2 \times 0.01}_{0.02}<P \text {-value }<\underbrace{2 \times 0.025}_{0.05}
$$

Ex. Suppose we wish to test $H_{0}: \mu=65$ us. $H_{1}: \mu<65 ; \sigma$ is unknown.

Given: $\bar{x}=63.4, s=3$ and $n=45$.
What is the p-value?
test Stat: $\quad t=\frac{\bar{\chi}-\mu_{0}}{5 / \sqrt{n}}=\frac{63.4-65}{3 / \sqrt{45}}=-3.578$

$$
d f=n-1=45-1=44
$$

P-value is $P(t<-3.578)$

But, there are no negative numbers on the t-table (Table V). However, the t-distribution is symmetric about its mean (zero). So, we can find $P(t>3.578)$

Now, there is no 3.578 on the row with $d f=44$ on Table V.

In fact, on that row, the largest number is 3. 286.

From the figure, the right-tail probability of 3.578 is less than the right-tail probability of 3.286 . ie. $\quad P$-value $=P(t>3.578)<\underbrace{P(t>3.286)}_{0.001}$

