Stat-1302; Lecture 8; Feb. 1, '24
Assignment 2 Coming Soon...
§10.1 Inferences About the Difference Between
Two Pop. means for Independent Samples: $\sigma_{1}$ and $\sigma_{2}$ are known

Set-up:

- A random Sample from a pop. w/ mean $\mu_{1}$ and $S t d$. devin $\sigma_{1}$ ( $\sigma_{1}$ known)

$$
\begin{gathered}
x_{11}, x_{1,2}, \ldots, x_{1, n_{1}} \\
\frac{n_{1}}{N_{1}}<0.05 \text { (ie. indep. obs'ns). }
\end{gathered}
$$

- A random sample from a pop. w/ mean $\mu_{2}$ and std. devin $\sigma_{2}$ ( $\sigma_{2}$ known)

$$
\begin{aligned}
& X_{21}, X_{2,2}, \ldots, X_{2, n_{2}} \\
& n_{2} / N_{2}<0.05
\end{aligned}
$$

- The two samples are independent of each other.

Want to test $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{1}: \mu_{1}>\mu_{2}$ or $H_{1}: \mu_{1}<\mu_{2}$ or $H_{1}: \mu_{1} \neq \mu_{2}$.

Assumptions:
At least one of the following is satisfied:
i) $n_{1} \geqslant 30, n_{2} \geqslant 30$
ii) If either sample size is small (ie. less than 30), then both pop.'s are normally distributed.

Parameter: $\mu_{1}-\mu_{2}$
Point estimate of $\mu_{1}-\mu_{2}: \bar{x}_{1}-\bar{x}_{2}$ where $\bar{\chi}_{i}, i=1,2$ is the $i$ th group sample mean.

Std. devin of $\bar{x}_{1}-\bar{x}_{2}$ :

$$
\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

Sampling Distribution of $\overline{x_{1}}-\bar{x}_{2}$ :

$$
\bar{x}_{1}-\bar{x}_{2} \approx N\left(\mu_{1}-\mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right)
$$

Test Statistic:

$$
z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \quad \text { Given }
$$

Assuming $H_{0}$ is true, the test statistic is a $N(0,1)$ riv.

This is a z-test. Rejection Regions and p-values are Computed as was done in Ch. 9 $z$-tests.
$100(1-\alpha) \%$ CI for $\mu_{1}-\mu_{2}$ when $\sigma_{1}$ and $\sigma_{2}$ are Known:

$$
\underbrace{\left(\overline{x_{1}}-\bar{x}_{2}\right)}_{\downarrow} \pm \overbrace{Z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}^{\text {margin of }} \text { error }
$$

point estimate
of $\left(\mu_{1}-\mu_{2}\right)$

Ex. In parts of eastern U.S., whitetail deer are a major nuisance. A Consumer Organization arranges a test of two of the leading deer repellents on the market ( $A$ and B). Fifty-six unfenced gardens in areas having high Concentrations of deer are used for the test. Twenty-nine gardens are Chosen at random to receive repellent $A$, and the other 27 receive repellent $B$. For each of The 56 gardens, the time elapsed between application of the repellent and the appearance of the first deer in the garden is recorded. For repellent $A$, the mean time is 101 hours. For repellent B, the mean time is 92 hours. Assume the pop. Std. deviations are $\sigma_{A}=15$ and $\sigma_{B}=10$.
a) Find a point estimate of $\mu_{1}-\mu_{2}$.

Let $\mu_{1}$ be the pop. mean for repellent $A$ and $\mu_{2} "=" \geqslant B$.

$$
\bar{x}_{1}-\bar{x}_{2}=101-92=9 \text { hrs. }
$$

b) Construct a $98 \%$ CI for $\mu_{1}-\mu_{2}$

$$
\begin{aligned}
& \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\alpha / 2} \sqrt{{\frac{\sigma_{1}}{n_{1}}}^{2}+\frac{\sigma_{2}^{2}}{n_{2}}} \\
& =9 \pm 2.33 \times \sqrt{{\frac{15^{2}}{29}}^{2}+\frac{10^{2}}{27}}=(1.1,16.9)
\end{aligned}
$$

$$
1-\alpha=0.98 ; \alpha=0.02, \quad \alpha / 2=0.01, z_{0.01}
$$



We are 98\% Confident that the difference
in the mean times ranges from 1.1 hours to 16.9 hours.
c) Test at the $2 \%$ Significance level whether the mean elapsed times for repellents $A$ and $B$ are difference. (Use Critical value and p-value approaches).

1. Parameter: $\mu_{1}-\mu_{2}$
2. $H_{0}: \mu_{1}-\mu_{2}=0$

$$
H_{1}: \quad \mu_{1}-\mu_{2} \neq 0
$$

$$
\left(\begin{array}{cc}
\text { or write } & H_{0}: \mu_{1}=\mu_{2} \\
& H_{1}: \mu_{1} \neq \mu_{2}
\end{array}\right)
$$

3. $\sigma_{1}$ and $\sigma_{2}$ known.

$$
\begin{aligned}
Z & =\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}=\frac{9-0}{\sqrt{\frac{15^{2}}{29}+\frac{10^{2}}{27}}} \\
& =\frac{9}{3.39}=2.66
\end{aligned}
$$

4. Reject $H_{0}$ if $|Z|>Z_{\alpha / 2}$.
le. $|z|>2.33$.

5. Since r $2.66>2.33$, we reject $H_{0}$.
6. Conclusion: We are $98 \%$ confident that the mean elapsed times of the two repellents are different.

P-value:


$$
\begin{aligned}
P \text {-value } & =2 \times P(z<-2.66) \\
& =2 \times 0.0039 \\
& =0.0078<\alpha=0.02
\end{aligned}
$$

$\therefore$ reject $H_{0}$; Same Conclusion as before.

Now let's test using the $98 \%$ CI for $\mu_{1}-\mu_{2}$.

Check to Bee if $\mu_{1}-\mu_{2}$ assuming $H_{0}$ is true falls within the CI.

Since zero ( $\mu_{1}-\mu_{2}=0$ under $H_{0}$ ) does not fall into ( $1.1,16.9$ ), we reject $H_{0}$; Same Conclusion as before.
§10.2 Inferences about $\mu_{1}-\mu_{2}$ when $\sigma_{1}$ and $\sigma_{2}$ are unknown based on two independent Samples.

Set-up:
Want to test $H_{0}: \mu_{1}=\mu_{2}$ but $\sigma_{1}$ and $\sigma_{2}$ are unknown.

- A r.s. of indep. obsins from a pop. w/ mean $\mu_{1} .\left(\frac{n_{1}}{N_{1}}<0.05\right) ; \begin{gathered}n_{1} \\ \text { size }\end{gathered}$
- A r.s. of indep. obsins from a pop. w/ mean $\mu_{2}\left(\frac{n_{2}}{N_{2}}<0.05\right) ; n_{2}$ is the sample Size
- The two samples are independent of each other.

Scenario 1: $\sigma_{1}, \sigma_{2}$ unknown, but $\sigma_{1}=\sigma_{2}$.
Scenario 2: $\sigma_{1}, \sigma_{2}$ unknown, but $\sigma_{1} \neq \sigma_{2}$.

In STAT-1302, we Study Scenariol only.
rest: $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{1}: \mu_{1}>\mu_{2}, H_{1}: \mu_{1}<\mu_{2}$,

$$
\text { or } H_{1}: \mu_{1} \neq \mu_{2}
$$

Test Statistic:

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \quad \text { where }
$$

$n_{1}$ and $n_{2}$ : Sample sizes of groups 1 and 2, respectively,
$\bar{x}_{1}, \bar{x}_{2}$ : Sample means of groups and 2 , respectively.

SP 2 : an estimate of the Common variance

$$
\sigma^{2}=\sigma_{1}^{2}=\sigma_{2}^{2}
$$

a pooled estimate of $\sigma^{2}$ :

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{\left(n_{1}+n_{2}-2\right)}
$$

where $S_{i}{ }^{2} ; i=1,2$ are Sample variances of group 1 and group 2.

Assuming $H_{0}$ is true, the test statistic follows a $t$-distribution with degrees of freedom, $\quad d f=n_{1}+n_{2}-2$.

P-value approach for t-tests are omitted. Critical value approach is the same as the test of $H_{0}: \mu=\mu_{0}(\sigma$ unknown $)$ except with def. $=n_{1}+n_{2}-2$.
$\times$ Can test two-sided alternatives here using a $100(1-\alpha) \%$ C.I for $\mu_{1}-\mu_{2}$ where $\sigma_{1}=\sigma_{2}=\sigma$ but unknown as before.

