STAT_1302; Lecture 7; Jan. 30, ' 24

- Assignment 1 due tomorrow.
- Assignment 2 coming soon.
§9.4 Tests for the Population Proportion when the Sample Size is large

Setup: A random Sample of Size n is drawn from a pop. Interest centres on testing $H_{0}: p=P_{0}$ vs. $H_{1}: p>P_{0}$ or $H_{1}: p<P_{0}$ or $H_{1}: p \neq p_{0}$ at level of Significance α.

Assumption: n is large. Verify these conditions $n \times p_{0}>5$ and $n \times q_{0}>5$ where $q_{0}=1-p_{0}$.

Test Statistic:

$$
Z=\frac{\hat{P}-P_{0}}{\sqrt{\frac{P_{0} q_{0}}{n}}} \quad \text { Given }
$$

Assuming H_{0} is true,

$$
Z=\frac{\widehat{p}-p_{0}}{\sqrt{\frac{P_{0} q_{0}}{n}}} \quad \approx N(0,1)
$$

(ie. this is a Z-test.)

Test

$$
\begin{aligned}
& H_{0}: p=P_{0} \text { vs. } H_{1}: P>P_{0} \\
& H_{0}: p=P_{0} \text { vs. } H_{1}: p<P_{0} \\
& H_{0}: p=P_{0} \text { vs. } H_{1}: P \neq P_{0}
\end{aligned}
$$

Rejection Region

$$
z>z_{\alpha}
$$

$$
z<-z_{\alpha}
$$

$$
\Leftrightarrow|Z|>Z_{\alpha / 2}
$$

Ex. A froe year old census recorded that 20\% of families in a large community live below the poverty line. To determine if this percentage has changed, a random Sample of 500 families is Studied and 91 are found to be living the poverty line. Does this find indicate that the current percentage is different from the percentage obtained from the past

Census? Let $\alpha=0.01$.
Sol'n:

1. Let p be the proportion of families Irving below the poverty line.
2. $\quad H_{0}: p=0.20$
$H_{1}: p \neq 0.20$
3. $Z=\frac{\hat{P}-P_{0}}{\sqrt{\frac{P_{0} q_{0}}{n}}}=\frac{0.182-0.2}{\sqrt{\frac{0.2 \times 0.8}{500}}}=-1.00$

$$
\widehat{p}=\frac{91}{500}=0.182
$$

3. Reject H_{0} if $|Z|>Z_{\alpha / 2}$.

$$
\alpha=0.01 ; \quad \alpha / 2=0.005, \quad Z_{0.005}
$$

in the area portion
Look up 0.005 in Table Ti. This gives $-z_{0.005}=-2.58 . \quad \therefore \quad z_{0.005}=2.58$.

Table IV

\therefore Reject H_{0} if $|Z|>2.58$.
4. Decision: $\mid-1.001=1<2.58 . \therefore$ fail to reject H_{0}.
5. Conclusion: There is not enough evidence to Suggest that the percentage of families living below the poverty line has changed since the last Census.

Assumption: n is large because

$$
n \times p_{0}=500 \times 0.20=100.0>5 \text { and }
$$

$$
n \underline{q}_{0}=500 \times 0.80=4000>5 .
$$

We can also test $H_{0}: p=0.2$ us. $H_{1}: p \neq 0.2$ using a 99% CI for p.

$$
\begin{aligned}
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} & =0.182 \pm 2.58 \sqrt{\frac{0.182 \times(1-0.182)}{500}} \\
& =(0.14,0.23) .
\end{aligned}
$$

Decision: Since $P_{0}=0.2$ is in the CI for P, we fail to reject H_{0}. Same conclusion as before.

Using the p-value approach:

$$
\begin{array}{ll}
\frac{\text { lest }}{} & \text { P-value } \\
H_{0}: p=P_{0} \text { rs. } H_{1}: p\left(P_{0}\right. & P\left(Z \otimes Z_{o b s .}\right) \\
H_{0}: p=P_{0} \text { vs. } H_{1}: p \otimes P_{0} & P\left(Z \geqslant Z_{0 b s .}\right) \\
H_{0}: p=P_{0} \text { vs. } H_{1}: p \neq P_{0} & P\left(|Z|>\left|Z_{0 b s} .\right|\right) .
\end{array}
$$

Back to our example.
$H_{0}: P=0.2$ vs. $H_{1}: P \neq 0.2$. Let's test using the p-value approach.

[P-value is $P(z<-1)+P(Z>1)$.]

$$
\begin{aligned}
P \text {-value } & =2 \times P(Z<-1) \\
& =2 \times 0.1587 \quad \text { (from Table IV }) . \\
& =0.3174>\alpha=0.01
\end{aligned}
$$

\therefore fail to reject H_{0}; Same Conclusion as before.

Recall: For any hypothesis test, reject H_{0} if p-value $<\alpha$.

Assumption: Same assumptions as critical value approach when testing using the p-value. Here, $n \times p_{0}>5$ and $n \times q_{0}>5$.
(Read ebook §9.4 for additional two-sided alternative p-value calculations.)

Ex. Test $H_{0}: P=0.44$ vs. $H_{1}: P<0.44$ at $\alpha=0.01$. Given: A random Sample of 450 observations and $\hat{p}=0.39$. (State any assumptions you are making.)

Rejection Region:

1. Parameter: p, pop. proportion
2. $H_{0}: p=0.44$ us. $H_{1}: p<0.44$
3. test Stat.

WileyPLUS

$$
\begin{aligned}
Z & =\frac{\tilde{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}=\frac{0.39-0.44}{\sqrt{\frac{0.44 \times 0.56}{450}}}=-2.137 \\
& \approx-2.14 \\
q_{0} & =1-p_{0}=1-0.44=0.56
\end{aligned}
$$

4. Reject H_{0} if $Z<-Z_{0.01}$.

Reject H_{0} i $\rho \quad \exists<-2.33$.

5. Fail to reject H_{0} because -2.14 is not in the rejection region.
6. Conclusion: Pop. prop. is 0.44 .

P-value Approach to testing:

$$
\text { P-value }=P(z<-2.14)=0.0162 \text { (Table IV). }
$$

P-value $=0.0162>\alpha=0.01 \therefore$ farl to reject H_{0}. Same conclusion as before.

End of \$9.4.

