Stat. 1302; Lecture 6; Jan. 25,'24
§9.3 Testing for $\mu: \sigma$ is unknown
σ unknown

Take nonparametric Statistics Course

Set-up: In all three cases, we have a random sample, X_{1}, \ldots, X_{n} from a population with mean μ and standard deviation, σ. σ is unknown. x_{1}, \ldots, x_{n} are independent (ie. $\frac{n}{N}<0.05$).

To test $H_{0}: \mu=\mu_{0}$ (σ unknown) in Cases I \& II, use the test statistic

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \leftrightarrow \text { Given }
$$

Under H_{0} (is. assuming H_{0} is true),

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \sim t_{n-1}
$$

Here,
$\bar{x}=$ Sample mean,
M_{0} is the value μ under H_{0}, S is the Sample Std. devin, n is the sample size.

$$
\begin{array}{ll}
\text { Test }(\sigma \text { is unknown }) & \text { Rejection Region } \\
H_{0}: \mu=\mu_{0}, H_{1}: \mu>\mu_{0} & t<t_{\alpha} \\
H_{0}: \mu=\mu_{0}, H_{1}: \mu<\mu_{0} & t<-t_{\alpha}
\end{array}
$$

$\times H_{0}: \mu=\mu_{0}, H_{1}: \mu \neq \mu_{0}$

$$
|t|>t_{\alpha / 2}
$$

$d f=n-1$.
t_{α} means $t_{n-1 ; \alpha}$

* Can use a 100(1- $) \%$ CI for μ where σ is unknown to test $H_{0}: \mu=\mu_{0}$ vs. $H_{1}: \mu \neq \mu_{0}$ as follows.

Approach: Compute $\bar{x} \pm t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}$
i) If μ_{0} is in the CI for μ, fail to reject H_{0}.
ii) If μ_{0} is not in the CI for μ, then reject H_{0}.

Omit p-value computations for the t-test.

Ex. The mean drying time of a brand of spray paint is known to be 90 seconds. The research division of the company believes that adding a new chemical ingredient to the paint will accelerate the drying process.
To investigate, the paint with the Chemical ingredient is sprayed on 15 surfaces. The mean and standard deviation from these drying times are found to be 86 and 4.5 seconds, respechvely. Do these data provide Strong evidence that the mean drying time is reduced by the addition of the new Chemical? Let $\alpha=0.05$. State any assumphons you are making.

Sol'n

1) μ : mean drying time
2)

$$
\begin{array}{ll}
H_{0}: & \mu=90 \\
H_{1}: & \mu<90
\end{array}
$$

σ is unknown.
3) test stat.

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{86-90}{4.5 / \sqrt{15}}=-3.44
$$

4) Rejection Region:

Reject H_{0} if $\quad \begin{aligned} t<-t_{\alpha} ; d \rho & =n-1= \\ & =15-1=14 .\end{aligned}$

$$
\alpha=0.05
$$

of	0.05
14	\vdots
	-1.761

\leftarrow Table \mathbb{V} (App. B).
-1.761

Reject H_{0} if $t<-1.761$
-3.44

5. Reject H_{0} Since $\quad t=-3.44<-t_{\alpha}=-1.761$.
6. Conclusion: We are 95% confident that addition of the new chemical reduced the drying time.
\rightarrow Assumphon: $n=15<30$ so pop. normal; $\frac{n}{N}<0.05$. Jargon: In hypothesis testing, when we reject H_{0} in favour of the H_{1} at level α, we say that the result is statistically significant.

Ex. A maker of diet meals claims that the average calorie Count of its meals is 800 . A researcher tests 12 meals and find the average number of Calories to be 873
and the Standard deviation to be 25. Does the evidence Support the claim? Let $\alpha=0.05$. State any assumptions you are making.

Sol'n:

1. Let μ be the mean Calorie count
2. $H_{0}: \mu=800$
$H_{1}: \mu \neq 800$
3. σ unknown; $S=25$.
test stat. : $\quad t=\frac{\bar{x}-\mu_{0}}{\frac{5}{\sqrt{n}}}=\frac{873-800}{25 / \sqrt{12}}=10.12$
4. Rejection Region:

Reject H_{0} at level α if $|t|>t_{\alpha / 2}$

$$
\begin{aligned}
& -t_{\alpha / 2} t_{\alpha / 2} \\
& \text { d.f. }=n-1=11
\end{aligned}
$$

$\alpha=0.05$
$t_{11 ; 0.025}=2.201$ from Table \bar{L} (APP. B).

Reject Ho ff $|t|>2.201$
5. Decision: Since $/ 10.121=10.12>2.201$, we reject H_{0}.
6. Conclusion: We are 95% confident that the mean calorie count of the diet meals is not 800 .

Assumption: Since $n=12<30$, need normal popul'n. And $\frac{n}{N}<0.05$.

Ex. E-Canis infection is a trick-borne disease of dogs that is Sometimes Contracted by humans. In the general population, the mean white blood cell count is $7250 / \mathrm{mm}^{3}$. The The mean white blood cell count of a
random sample of 15 infected persons is $4767 / \mathrm{mm}^{3}$ and the Standard deviation is $3204 / \mathrm{mm}^{3}$. Does the data suggest that persons infected with E-Canis have lower whiter blood cell counts? Let $\alpha=0.01$.

Sols:

1. Parameter: μ the mean white blood cell count
2. $H_{0}: \mu=7250$

$$
H_{1}: \mu<7250
$$

3. Test stat. :

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{4767-7250}{3204 / \sqrt{15}}=-3.00
$$

σ unknown
4. Rejection Region:

Reject H_{0} if $\quad t<-t_{\alpha} ; d f=n-1=14$.

$$
t_{14 ; 0.01}=2.624 ;
$$

Reject if $t<-2.624$.
-3.00

5. Decision: Since $t=-3.00<-2.624$, we reject H_{0}.
6. Conclusion: We are 99% Confident that the mean blood count of people infected with E-Canis is less than $7250 / \mathrm{mm}^{3}$.

Assumptions: (Case I) i) pop. is normal and ii) $n / N<0.05$ (ie. independent obsins).

Ex. A car manufacturer wants to determine whether a luxury model gives satisfactory mileage so that the overall EPA requirement on mileage per car manufactured can be met. The particular model
will be Considered Satisfactory if the true mean mileage μ is greater than 20 miles per gallon. A field experiment was Conducted in which ten Cars were driven under almost identical Conditions and the miles per gallon were Computed for each. The results (in miles) were as follows.
$\begin{array}{lllllllllll}23 & 18 & 22 & 19 & 19 & 22 & 18 & 18 & 24 & 22\end{array}$ Based on the data, is there Sufficient evidence for the manufacturer to decide that the model is Satisfactory? Let $\alpha=0.05$.

Solis:

1. Parameter: μ, the mean mileage.
2.

$$
\begin{aligned}
& H_{0}: \mu=20 \\
& H_{1}: \mu>20
\end{aligned}
$$

3. Test statistic: $\quad t=\frac{\bar{x}-\mu_{0}}{5 / \sqrt{n}}=\frac{20.5-20}{2.32 / \sqrt{10}}=0.682$

Here, $\bar{x}=20.5, S=2.32 ; \sigma$ is unknown.
4. Rejection Region: Reject H_{0} if $t>t_{0.05}$; $d \cdot f=n-1=10-1=9$.

Table I :

Af	0.05
	\vdots
9	$-\cdots$

So, we reject H_{0} if $t>1.833$.
5. Decision: Since $t=0.682<1.833$, we fail to reject H_{0}.
6. Conclusion: There is not enough evidence to Suggest that the true mean mileage per gallon is greater than 20.

