Stat-1302; Lecture 3; Jan. 16, '24

Motivating Example:
A quality Control engineer draws a random sample of 100 cans of Soft drink from an assembly line, and finds the average soda amount to be 350.2 mL . The cans are stated to Contain 355 mL . Based on the sample mean Can we Conclude that on average the cans are being underfilled?

Scenario I: Let $X=$ fill amount. $X \sim N(355,5)$

Scenario II: $\quad X \sim \sim(355,1)$

$$
\begin{aligned}
& \bar{x}=350.2 \mathrm{~mL} \\
& n=100
\end{aligned}
$$

Ch. 9 thypothesis Testing.
Framework:
Steps for conducting a hypothesis test:

1. Identify the model parameter (s) of interest.
2. Write down the null hypothesis and the alternative hypothesis. These involve the parameter (s) of interest.
3. From the sample data Calculate a test statistic (ie. a Single number computed from the random sample).
4. Based on the test statistic either
i) Check whether the test statistic falls into a rejection region

OR
ii) Calculate the p-value of the test statistic.
5. Using 4), make a decision about whether there is enough evidence to reject the null hypothesis in favour of the alternative hypothesis.
6. Write a sentence about the Conclusion in 5). in the words of the problem.

Ex. In the Soda example, the parameter of interest is μ, the mean fill amount.

Two Hypotheses:
Notation: H_{0} ("H-null")
\Leftrightarrow null hypothesis
H_{1} or $H_{A} \Leftrightarrow$ alternative hypothesis
H_{0} : A statement about the parameter that is assumed to be true until it is declared false (\Leftrightarrow the Status-quo).
$H_{1}:$ A Statement about the parameter that is the complement of H_{0}.

Ex. $\mu=$ mean fill amount of Cans
$H_{0}: \mu=355 \quad$ (In fact, $H_{0}: \mu \geqslant 355$).
$H_{1}: \mu<355$ (In this Course, always write $\left.H_{0}: \mu=\ldots ..\right)$

Remark: Choice for H, are " $<$ ", ">", or " \neq ".
H_{1} may be one-sided or two-sided.

Ex. $\quad H_{0}: \mu=355$

$$
H_{1}: \mu<355
$$

One-sided
(left-tailed)
or

$$
\begin{array}{ll}
H_{0}: \mu=355 & \text { one-sided } \\
H_{1}: \mu>355 & \text { (right-tailed) }
\end{array}
$$

$$
\begin{array}{ll}
H_{0}: \mu=355 & \text { two-sided/two-tailed } \\
H_{1}: \mu \neq 355 & \text { test. }
\end{array}
$$

One way to make a decision about whether or not to reject H_{0} in favour of H, is to construct a rejection region using critical value. So that if our test statistic falls into the rejection region, we reject H_{0} in favour of H_{a}.

Ex: $H_{0}: \mu=355$

$$
H_{1}: \mu>355
$$

Ref Region $=\{T: T \otimes C\}$

Ex: $\quad H_{0}: \mu=355$

$$
\text { vs. } H_{1}: \mu 『 355
$$

Rej Region: $\{T: T \backsim D\}$

$$
H_{0}: \mu=355 \quad \text { vs. } H_{1}: \mu \neq 355
$$

The critical value is based on α (level of Significance).

Decision
Accept H_{0}

Hotrue	H_{1} true
Type I Error	\checkmark
\checkmark	Type II Error

Type Error: = Reject H_{0} when H_{0} is true

Type II Error: = Accept H_{0} when H_{1} is true.
$\alpha:=P($ Type I Error $)$
$\beta:=P($ Type II Error $)$

The researcher selects α Prior to looking at the data. Small α values are selected:

$$
\alpha=0.01, \quad \alpha=0.05, \quad \alpha=0.10
$$

Ideally, we would like to control α and β, simultaneously. But this is not possible. Convention: Type I Error is viewed as more serious. \therefore Select α only.

Interpretation:
Suppose we select $\alpha=0.05$. Since α is a probability, based on the relative frequency interpretation of probability, of we were to conduct 100 tests, we would expect 5 of those tests (ie. 5%) to reject H_{0} when H_{0} is true. Or, 95 out of 100 tests are expected to make a correct decision about rejecting H_{0}. Our particular test, may be one of the
5% incorrect decisions, or it may be one of the 95\% Correct decisions.

Ex. Cola example:

$$
H_{0}: \quad \mu=355
$$

Type I Error: Stating $\mu<355$ when in fact $\mu=355$; or Stating $\mu>355$ when in fact $\mu=355$; or stating $\mu \neq 355$ when in fact $\mu=355$.

Type II Error:
i) Stating $\mu=355$ when in fact $\mu<355$; or ii) Stating $\mu=355$ when in fact $\mu>355$, or iii) Stating $\mu=355$ when in fact $\mu \neq 355$. $\underset{\rightarrow \alpha \underset{\text { Reject }}{A R T} \text { True }}{\substack{A R}}\}$ in terms of H_{0}
$\left.\begin{array}{l}B A F \rightarrow \text { False } \\ \downarrow \\ \beta\end{array}\right\}$ Accept \quad in terms of H_{0}
$\beta=P$ (Type II Error)
$=P\left(\right.$ Accept H_{0} when H_{0} false)
$=P\left(\right.$ accept H_{0} when H_{1} true $)$

P-value: The probability of getting the data you got (Summarized by the test statistic) or Something more extreme assuming H_{0} is true.

* P-value interpretation:

Small p-values lead to rejection of H_{0}. (ie. p-value $<\alpha$), because this says that the data are not very likely if H_{0} is true.

