STAT-1302; Lecture 2; Jan. 11,'24

Last lecture wars a review of CI's for M when T is Known (§ 8.1, 8.2).

Ex. A City planner wants to estimate the average monthly residential water usage in the City. He selected a random Sample of 39 households from the City, which gave the mean water usage to be 3,411.7 gallons over a month period. Based on earlier data, the population Standard deviation of the monthly residential water usage in this City is 387.5 gallons. Construct a 97% Confidence internal for the average monthly residential water usage for all households in this city. <u>Sol'n</u>: Given: X = Water usage; T = 387.5

 $X_{1,...,} X_{39}$ is a random Sample and N = 39 = 30 (CASE II).

$$\overline{\chi} \pm Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 3411.7 \pm 2.17 \cdot \frac{.387.5}{\sqrt{39}} = *$$

 $100(1-\alpha)\% = 97\% \Rightarrow 1-\alpha = 0.97, \alpha = 0.03$ $\alpha/_2 = 0.015$

 $X = 3,411.7 \pm 134.6534 = (3,277.0,3,546.4)$

§ 8.3 CI for u when T is unknown. Recall: Let X1,..., Xn be a random Sample from a population with mean M. Then,

S= Sample standard deviation

 $t = \frac{\overline{x} - \mu}{S/\sqrt{n}} \sim t_{n-1}$ a t-distribution
i doarees with n-1 degrees of Parameter.

Recall: tx/2 = ?

1- a = P(-ty - t < ta/2) t r.v.

$$= \mathcal{P}\left(-t_{a_{2}} < \frac{\overline{\chi} - \mu}{s_{\sqrt{n}}} < t_{a_{2}}\right)$$

$$= P(\overline{\chi} - t_{\alpha_{1}}, \frac{S}{\sqrt{n}} - \mu < \overline{\chi} + t_{\alpha_{1}}, \frac{S}{\sqrt{n}})$$

A 100(1-a)% CI for 14 when T is

$$\overline{\chi} \pm t_{\alpha_{1_{2}}} \frac{s}{\sqrt{n}} \qquad (d.f.=n-1).$$

$$\overline{(J \ unknown)}$$

$$\overline$$

Unknown

Ex. A new alloy has been devised for use in a Space vehicle. Tensile strength measurements are made on 15 pieces of alloy and the mean and standard deviation of these measurements are found to be 39.3 and 2.6, respectively.

Construct a 90% confidence interval for the
mean tensile Strength of this alloy. State
any assumptions you are making.
Given:
$$X = tensile$$
 strength
 $X_{1,...,X_{15}}$ is a random sample; $N = 15$;
 $\overline{X} = 39.3$; $S = 2.6$.
Want: A 90% CI for M .
 $\overline{X} \pm ta_2$. $\frac{5}{\sqrt{n}} = 39.3 \pm 1.761$, $\frac{2.6}{\sqrt{15}} = xx$

 $100(1-\alpha)\% = 90\%$; $1-\alpha = 0.9$ and $\alpha = 0.1$:. $\alpha/_2 = 0.05$.

$$d \cdot f \cdot = n - 1 = 15 - 1 = 14.$$

xx = [38.12, 40.48).

Since n=15 < 30, we need X=tensile strength to be normally distributed. Interpretation: We are 90% Confident that the true mean tensile strength is between 38.12 and 40.48.

to be 0.36 and 0.06, respectively. Compute a 99% confidence interval for the mean Concentration of lead per 1,000 Cm³ of Sediment in the lake bottom. State any assumptions you are making. Sol 'n . Given: X = lead Concentration per 1,000 Cm3. Ki, ..., X25 is a random Sample. J is Unknown. Assumption: (CASEI): X is normally

distributed.

 $\overline{\chi} \pm t \alpha_{12} \cdot \frac{5}{\sqrt{n}} = 0.36 \pm 2.797 \cdot \frac{0.06}{\sqrt{25}} = 1 \times \times \times 10^{-10}$

 $d \cdot f = n - 1 = 25 - 1 = 24.$

 $100(1 - \alpha)\% = 99\%, 1 - \alpha = 0.99; \alpha = 0.01$ $\alpha/n = 0.005$

 $(\times \times \times \times) = (0.33, 0.39).$

Interpretation: We are 99% Confident that the mean lead concentration is between 0.33 and 0.39 per 1,000 Cm³.

- $(\overline{X} = Sample mean S = Sample Standard deviation$
 - $\mathcal{H} = population mean$ $\sigma = population Standard deviation)$

End of \$.8.3.

§ 8.4 (I's for the Population Proportion (in large samples).

$$\hat{P} = \# \text{ of items in a random Sample}$$

 $\hat{P} = \text{with the characteristic of interest}$

n

- n = Sample size
- p is a point estimator of the population proportion, p.
- A $100(1-\alpha)$? CE for p (when $\frac{n}{N} < 0.05$ $n\hat{p} > 5$ and $n\hat{q} > 5$) is

$$\widehat{P} \neq Z_{\alpha_{2}}, \sqrt{\frac{\widehat{P}\widehat{q}}{n}}$$

 $\widehat{\widehat{q}} = I_{-} \widehat{p}.$

Ex. According to a 2005 Survey of 1,506 adult Americans, 75% of them Said they frequently have Sleep problems. Compute a 19% Confidence interval for the percentage of all adult Americans who frequently

Rave sleep problems.
Sol'n:
Given:
$$N = 1506$$
, $\hat{p} = 0.75$
Show $\begin{cases} N\hat{p} = 1506 \times 0.75 = 1129.5 > 5 \text{ and} \\ N\hat{q} = 1506 \times 0.25 = 376.5 > 5 . \\ 1 - \alpha = 0.99$; $\alpha = 0.01$; $\alpha/_2 = 0.005$
 $Z_{0.005} = ?$
 $N(0,1)$
 0.005
 $Z_{0.005} = ?$
 $N(0,1)$
 0.005
 $Z_{0.005} = N(0,1)$
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005
 0.005

= 0.75 ± 0.029 ~=(0.721, 0.779).

Interpretation: We are 99% Confident that the percentage of adult Americans with skep problems is between 72.1% and 77.9% MM