Stat-1302; Lecture 18; March 19,'24

Test 2 Info. on Nexus

In Ch. 13, § 13.1
Last lecture:
Data:
(χ): Age (in years)
(y) : Price (in hundreds of dollars)

See Summary Stats. in Lecture 17.
a) least squares regression line:

$$
\text { Price }=318.83-33.49 \times \text { Age }
$$

b) Give a brief interpretation of " a " and " b " calculated in Part (a).
$b: \quad-33.49$ is the estimated decrease $(b<0)$
in the mean price when age (x) is increased one unit (1 year).

That is, the average price of the vehicle goes down by $\$ 3349$ when the age of the vehicle goes up by one year.
a a Statistically, 318.83 is the mean price when age (x) is zero. For this problem, 318.83 is not meaningful.
(c) Predict the price of a 7-year old Car.

$$
\begin{aligned}
& \text { Price }=318.83-33.49 \times \text { Age } \\
& \text { Price }=318.83-33.49 \times 7=84.4 \\
& \text { (i.e. } 84.4 \times 100=\$ 8440 \text {). } \\
& \hat{\text { units of } x}
\end{aligned}
$$

Remark: It is safe to use the estimated
regression line to predict the price of a 7-year old car because $x=7$ falls with en the range of x-values observed in this data set (See Lecture 17).
d) Predict the Price of an 18-year old car. Comment on the finding.

$$
\text { Price }=318.83-33.49 \times 18=-283.99
$$

i) negative price!
ii) Even if the Predicted Price for an 18-year old Car were positive. $x=18$ is outside the range of x-values for which the data is collected; it is not safe to use the regression line for $x=18$.

Regression is for interpolation, not extrapolation.
§ 13. 2 Standard Deviation of Errors \&
Coefficient of Determination:

Recall the idea of a residual:

$$
e=Y-\hat{Y} \quad \text { where }
$$

$Y=$ observed response,
$\hat{Y}=$ Predicted response from the estimated least squares regression line.

Recall: The Simple Linear Regression Model:

$$
Y_{i}=A+B X_{i}+\varepsilon_{i}
$$

$\varepsilon_{i} \stackrel{\text { ind }}{\sim} N\left(0, \sigma^{2}\right)$, for $i=1, \ldots, n$.
e_{i} is a_{n} estimate of ε_{i}.

Long-hand formula for estimating σ :

$$
\begin{aligned}
S_{e}=\widehat{\sigma} & =\sqrt{\frac{S S E}{n-2}} \\
& =\sqrt{\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2}}=\sqrt{\frac{\sum e_{i}^{2}}{n-2}}
\end{aligned}
$$

Chort-cut formula (Green):

$$
S_{e}=\sqrt{\frac{S_{y y}-b S_{x y}}{n-2}}
$$

where

$$
\begin{aligned}
& S S_{x y}=\sum x y-\frac{\left(\sum x\right)\left(\sum y\right)}{n} \\
& S S_{y y}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}
\end{aligned}
$$

Ex. Consider the food expenditure (y) and monthly income (x) example in a previous lecture.

Summary Statistics:

$$
\begin{aligned}
& \sum x=212, \quad \sum y=64, \quad \sum x y=2150, \\
& \sum x^{2}=7,222, \quad \sum y^{2}=\cdots \cdots \\
& S S_{y y}=\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}=60.8571
\end{aligned}
$$

On: What is an estimate of the Standard deviation of the residuals?
(Model: Expenditure $=A+B \times$ Income $+\varepsilon$ where $\varepsilon \stackrel{\text { ind }}{\sim} N\left(0, \sigma^{2}\right)$.

This gin is asking you to estimate σ.

$$
\begin{aligned}
& S_{e}=\sqrt{\frac{S S_{y y}-b S_{x x}}{n-2}} \\
&=\sqrt{\frac{60.8571-0.2642(211.7143)}{7-2}}=0.9922 \\
& \therefore \hat{\sigma}_{e}=0.9922 .
\end{aligned}
$$

[Extra: STAT-3103

$$
\begin{array}{ll}
S S T=S S R+S S E \\
S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & \text { Total Sums of Squares } \\
S S R=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} & \text { Regression Sums of Squares } \\
S S E=\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2} \quad \text { Error Sums of Squares. }
\end{array}
$$

For the least Squares line to be useful, we want SSR to be "large" relative to SSE.]

A statistic to assess the usefulness of the regression line is the Coefficient of determination $\left(r^{2}\right)$.

It measures the proportion of the variation in Y (the response variable) that is explained by our X (the explanatory variable).

$$
r^{2}=\frac{S S R}{S S T}
$$

Short-cut formula:

$$
r^{2}=6 \frac{S_{x y}}{S S_{y y}}
$$

(Not given!)

But, to find r. Square the value of

$$
r=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}
$$

Correlation between x and y
\&
Given on Final

Property of $r^{2}: \quad 0 \leq r^{2} \leq 1$
Ex. Consider the monthly food expenditure (y) and monthly income (x) regression example.

Quin: What is the percentage of the variation in monthly food expenditure that is explained by monthly income (x) ?
(ic what is r^{2} (expressed as a percentage)?)

$$
\begin{aligned}
& r=\frac{S S_{x y}}{\sqrt{S S_{x x} \cdot S S_{y y}}}=\frac{211.7143}{\sqrt{801.4286(60.8571)}}=0.9587 \\
& \therefore \quad r^{2}=0.96 \\
& \therefore .96^{2}=0.92
\end{aligned}
$$

Interpretation: Approx. 92% of the variation in monthly food expenditure (y) is explained by monthly income (x).

Compare with:

$$
r^{2}=\frac{b S S_{x y}}{S S y y}=0.2642 \times \frac{211.7143}{60.8571}=0.92
$$

Q13.3 Inference about B

Idea: want to test whether the regression line is "useful". We do this by testing.
$H_{0}: B=0 \quad$ "regression line not useful".
against

$$
\begin{aligned}
& H_{1}: B>0 \text { or } H_{1}: B<0 \text { or } \\
& H_{1}: B \neq 0 .
\end{aligned}
$$

 use \bar{y} to predict y rather than x.

Test Statistic:

$$
t=\frac{b-B_{0}}{s_{e} \sqrt{S S_{x x}}}
$$

(See S_{e} on formula sheet)

Under H_{0} (ie. assuming H_{0} is true),

$$
t=\underline{b-B_{0}} \quad \sim t_{n-2}
$$

Se $/ \sqrt{S S_{x x}}$

$$
H_{0}: B=0
$$

Test
Rejection Region:

$$
\begin{aligned}
& H_{0}: B=0 \text { vs. } H_{1}: B>0 \quad t>t_{n-2 ; \alpha} \\
& H_{0}: B=0 \text { vs. } H_{1}: B<0 \quad t<-t_{n-2 ; \alpha} \\
& H_{0}: B=0 \text { vs. } H_{1}: B \neq 0 \quad|t|>t_{n-2 ; \alpha / 2} \\
& \Leftrightarrow \\
& t<-t_{n-2 ; \alpha / 2} \text { or } \quad t>t_{n-2 ; \alpha / 2} \\
& -t_{n-2 ; \alpha / 2} \quad t_{n-2 ; \alpha / 2}
\end{aligned}
$$

Omit p-value for testing $H_{0}: B=O$.

