STAT-1302; Lecture 16; March 12, 124

Refer to the drugs example in Lecture 15.

Often, ANOVA results are Summarized in an "Anova Table".

Anova

SSW $=$ Within Sum of Squares.

ANOVA

Source		$d f$		$S S$	
				$M S$	E
Between	2	2645.7	1322.85	9.54	
Within	12	1664.03	138.67		

Total $14 \quad 4309.73$

Ex. An experiment is conducted to determine the Soil moisture deficit resulting from varying amounts of residual timber left after Cutting trees in a forest. Interest Centres on Comparing three groups. In "Group 1", there is no timber left. In "Group 2", 2,000 broad feet are left.

In "Group 3", there are 8,000 broad feet left. The data are as follows.

Moisture Deficit in Soil

Group 1	Group 2	Group 3
1.52	1.63	2.56
1.38	1.82	3.32
1.29	1.35	2.76
1.48	2.30	2.63
1.63	1.45	2.12
$T_{1}=7.30$	$T_{2}=9.58$	2.78
$\bar{y}_{1}=1.460$	$\bar{y}_{2}=1.597$	$\bar{y}_{3}=16.17$

Test whether the group means are different. Let $\alpha=0.05$.

$$
H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \quad \text { vs. }
$$

H_{1} : Not all μ_{1} 's are equal.

$$
\begin{aligned}
& \sum x=T_{1}+T_{2}+T_{3}=33.05 \\
& n_{1}=5, n_{2}=6, n_{3}=6 \Rightarrow n=n_{1}+n_{2}+n_{3}=17 . \\
& \sum x^{2}=71.3047 \\
& S S B=\sum_{i=1}^{3} \frac{T_{i}^{2}}{n_{i}}-\frac{\left(\sum x\right)^{2}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{7.30^{2}}{5}+\frac{9.58^{2}}{6}+\frac{16.17^{2}}{6}\right)-\frac{33.05^{2}}{17} \\
& =69.5322-64.2531=5.2791 \text {. } \\
& \left(\sum x^{2}=1.5^{2}+1.38^{2}+\cdots+2.12^{2}+2.78^{2}\right. \\
& =71.3047 \text {) } \\
& \operatorname{SSW}=\sum x^{2}-\sum_{i=1}^{3} \frac{T_{i}{ }^{2}}{n_{i}} \\
& =71.3047-69.5322=1.7725 \\
& M S B=S S B /(k-1)=5.2791 / 2=2.640 \\
& M S W=S S W /(n-k)=1.7725 / 14=0.127 \\
& \text { (} k=3 \text { groups; } n=17 ; \quad n-k=14 ; \quad n-1=16 \text {) } \\
& F=\frac{M S B}{M S W}=\frac{2.640}{0.127}=20.79 .
\end{aligned}
$$

ANOVA
$\begin{array}{lllll}\text { Source } & \underline{d f} & \text { SS } & \text { MS } & E \\ \text { Between } & 2 & 5.2791 & 2.640 & 20.79\end{array}$

Within	14	1.7725	0.127

Total 16

If for SSB= $=k-1=3-1=2$
If for SSW $\operatorname{SS}=n-k=17-3=14$
If for $S S T=n-1=17-1=16$

Compare $F_{\text {obs. }}=20.79$ with $F_{2,14 ; 0,05}=3.74$

Decision rule: Reject H_{0} if $F_{0 b s}>3.74$.

Since $20.79>3.74$, we reject H_{0}.

Conclusion: We are 95% confident that not all group means are equal.

Assumptions:
Three independent groups from a normal MCQ population all with the same variance σ^{2}. The observations in each group are independent.

Rule of Thumb:
(Used to verify Constant variance σ^{2} for all groups.):

THC....

Ch.13. Simple Linear Regression

Objective: Study the linear relationship between a quantitative outcome variable (y) and an explanatory variable (x).
e.g. monthly income (x)
y

Want to use x to predict y based on the linear relationship observed in the scatterpbt.

We want to regress Y against x.

Notes:

1. Y(e.g. food expenditure) \Leftrightarrow response variable \Leftrightarrow outcome variable \Leftrightarrow dependent variable.
2. χ (e.g. monthly expenditure) \Leftrightarrow explanatory variable \Leftrightarrow predictor \Leftrightarrow independent variable.
3. A scatterplot of Y against x reveals a linear trend. We want to fit the "best" straight line through these data points.
(High School: $\quad Y=m X+b$ is the equation of a straight line.) $\}$ slope intercept
