STAT-1302; Lecture 12; Feb. 15,'24
Test 1 Info. on Nexus; Ass't \#3 on Nexus.

Ch. 11. Chi-Square Tests
§11.1 The Chi-square Distribution

Data:

The Chi-square distribution is a probability distribution that models Some Continuous random variables (e.g. the test statistics in Ch.l1) that is skewed to the right and it is for r.v.'s that are Positive.
$f(x)$ (the Chi-square Probability density function) soothes the histogram. Its behaviour is
determined by a degrees of freedom parameter (ν) .

Read v as "nu". $v=1,2,3, \ldots$

Remark: The entire area under the prob. density function of a Chi-square distribution equals one.

Write $X \sim X_{v}^{2}$ and read this a the r.v. X follows a Chi-square distribution with v degrees of freedom.
\times The mean, variance and shape of a Chi-square distribution are determined by the degrees of freedom, ν.

Table VI (App. B) provides the upper α points of the x_{v}^{2}-distribution.

Ex. $X \sim X_{4}^{2}$. What is $P(X>7.779)$?
Ans. 0.100

\sim Table VI

$d f$	Area in Right Tail
0.100	
	\vdots
	$--\quad-7.779$

§ 11.4 Inferences about the Population Variance

Result: Let X_{1}, \ldots, X_{n} be a random from a normal population with mean μ and Standard deviation σ. And $\frac{n}{N}<0.05$ (ie. X_{1}, \ldots, X_{n} are independent random variables). Then

$$
x^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}
$$

follows a Chi-square distribution with $n-1$ degrees of freedom.

A $100(1-\alpha) \%$ CI for σ^{2} where X_{1}, \ldots, X_{n} is a random sample from a normal population with $\frac{n}{N}<0.05$:

$$
\text { di. }\left(\frac{(n-1) s^{2}}{x^{2}}, \frac{(n-1) s^{2}}{x^{2}}\right)
$$

where
n is the sample Size;
$S^{2} "$ " variance
$x_{\alpha / 2}^{2}:$

$$
x_{1-\alpha / 2}^{2}
$$

In general, the notation $X_{v, \alpha}^{2}$ means

Ex. A Prof's " 50 -minutes" lecture varies in length. The prof. claims that the variance of her lectures is within 2 minutes 2. A random Sample of 23 of these lectures was timed giving a sample variance of 2.7 minutes. ${ }^{2}$. Compute a 98% Confidence interval for the variance and
the standard deviation of all 50-minutes lectures given by this Prof. State any assumptions you are making.

Assumptions: Lecture lengths are normally distributed and independent of each other (or, write $\frac{n}{N}<0.05$).

$$
\left(\frac{(n-1) S^{2}}{x_{\alpha / 2}^{2}}, \frac{(n-1) s^{2}}{x^{2}}\right)
$$

$$
\begin{aligned}
& n=23 ; \quad S^{2}=2.7 ; \quad 1-\alpha=0.98 ; \alpha=0.02 \\
& \alpha / 2=0.01 ; \quad 1-\alpha / 2=1-0.01=0.99
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{\alpha / 2}^{2}=x_{0.01}^{2}=40.289 \\
x_{1-\alpha / 2}^{2}=x_{0.99}^{2}=9.542
\end{array}\right\} \begin{aligned}
& \text { See Table II } \\
& d f=n-1=22 .
\end{aligned}
$$

$$
\left(\frac{22 \times 2.7}{40.289}, \frac{22 \times 2.7}{9.542}\right)
$$

$=(1.474,6.225)$ is the 98% CI for σ^{2}

A 98% CI for σ is

$$
(\sqrt{1.474}, \sqrt{6.225})=(1.214,2.495)
$$

Interpretation: We are 98% Confident that the variance of the lectures varies between 1.474 and 6.225 minutes 2 while the Standard deviation of the lectures varies between 1.214 and 2.495 minutes.

Hypothesis Testing for σ^{2} :
lest

$$
\begin{array}{cl}
H_{0}: \sigma^{2}=\sigma_{0}^{2}, H_{1}: \sigma^{2}>\sigma_{0}^{2} & x^{2}>\chi_{\alpha}^{2} \\
H_{0}: \sigma^{2}=\sigma_{0}^{2}, H_{1}: \sigma^{2}<\sigma_{0}^{2} & x^{2}<\chi_{1-\alpha}^{2} \\
\times \times H_{0}: \sigma^{2}=\sigma_{0}^{2}, H_{1}: \sigma^{2} \neq \sigma_{0}^{2} & x^{2}>x_{\alpha / 2}^{2} \text { or } x^{2}<x_{1-\alpha / 2}^{2}
\end{array}
$$

rejection region
$* *$ Can use the $100(1-\alpha) \%$ CI for σ^{2} to test $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ vs. $H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$ by checking to see if σ_{0}^{2} is in the CI. If yes, we fail to reject H_{0}. If no, we reject H_{0}.

Test Statistic:

$$
X^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}} \quad \sim \text { Given }
$$

Under $H_{0}, \quad X^{2}=\frac{(n-1)}{\sigma_{0}^{2}} S^{2} \sim x_{\underbrace{2}}^{2}$

P-value approach: not tested.

Ex. A bank manger does not want the variance of waiting times to be greater (tan 4 minutes. A random sample of 25 customers gave a variance of waiting times to be 8.3 minutes ${ }^{2}$. Assume waiting times are normally distributed. Is the waiting time for all customers at this bank more than 4 minutes. Let $\alpha=0.01$.

Sol'n:
Let σ^{2} be the pop. variance of waiting times.

$$
\begin{aligned}
& H_{0}: \sigma^{2}=4 \\
& H_{1}: \sigma^{2}>4 \\
& x^{2}=\frac{(n-1)}{\sigma_{0}^{2}} 5^{2}=\frac{(25-1)}{4} 8.3=0.01 \\
&
\end{aligned}
$$

Reject H_{0} if $x^{2}>x_{0.01}^{2} ; d f=25-1=24$.

$$
x_{24 ; 0.01}^{2}=42.980
$$

Table VI
Area in the Right Tail

$d f$	0.01
\vdots	\vdots
24	$-1-42.980$

Reject H_{0} if $X^{2}>42.980$.

Since $x^{2}=49.8>42.980$, we reject H_{0}.

Conclusion: We are 99% confident that the variance of waiting times at this bank is more than 4 minutes.

